Regulation of myocardial fatty acid oxidation by substrate supply.
نویسندگان
چکیده
We tested the hypothesis that myocardial substrate supply regulates fatty acid oxidation independent of changes in acetyl-CoA carboxylase (ACC) and 5'-AMP-activated protein kinase (AMPK) activities. Fatty acid oxidation was measured in isolated working rat hearts exposed to different concentrations of exogenous long-chain (0.4 or 1.2 mM palmitate) or medium-chain (0.6 or 2.4 mM octanoate) fatty acids. Fatty acid oxidation was increased with increasing exogenous substrate concentration in both palmitate and octanoate groups. Malonyl-CoA content only rose as acetyl-CoA supply from octanoate oxidation increased. The increases in octanoate oxidation and malonyl-CoA content were independent of changes in ACC and AMPK activity, except that ACC activity increased with very high acetyl-CoA supply levels. Our data suggest that myocardial substrate supply is the primary mechanism responsible for alterations in fatty acid oxidation rates under nonstressful conditions and when substrates are present at physiological concentrations. More extreme variations in substrate supply lead to changes in fatty acid oxidation by the additional involvement of intracellular regulatory pathways.
منابع مشابه
Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation.
Recent human and animal studies have demonstrated that in severe end-stage heart failure (HF), the cardiac muscle switches to a more fetal metabolic phenotype, characterized by downregulation of free fatty acid (FFA) oxidation and an enhancement of glucose oxidation. The goal of this study was to examine myocardial substrate metabolism in a model of moderate coronary microembolization-induced H...
متن کاملFree fatty acid oxidation in insulin resistance and obesity.
The growing worldwide epidemic of obesity and diabetes portends a significant increase in cardiovascular disease. Obesity is associated with insulin resistance, and there is growing evidence that these conditions independently increase the risk of heart failure. Changes in myocardial substrate utilization develop in obesity and insulin resistance, and are characterized by increased fatty acid o...
متن کاملMyocardial lactate metabolism in fetal and newborn lambs.
BACKGROUND Around birth, myocardial substrate supply changes from carbohydrates before birth to primarily fatty acids after birth. Parallel to these changes, the myocardium is expected to switch from the use of primarily lactate before birth to fatty acids thereafter. However, myocardial lactate uptake and oxidation around birth has not been measured in vivo. METHODS AND RESULTS We measured m...
متن کاملRegulation of energy substrate metabolism in the diabetic heart.
The effects of diabetes on myocardial metabolism are complex in that they are tied to the systemic metabolic abnormalities of the disease (hyperglycemia and elevated levels of free fatty acid and ketone bodies), and changes in cardiomyocyte phenotype (e.g., down-regulation of glucose transporters and PDH activity). The cardiac adaptations appear to be driven by the severity of the systemic abno...
متن کاملMyocardial fatty acid metabolism in health and disease.
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 281 4 شماره
صفحات -
تاریخ انتشار 2001